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1. Introduction
Motivation :

understand nucleon structure from first principle

We calculate matrix elements related to nucleon structure on Nf =241
DWEF configuration.

® ga/gv
Well determined experimentally: g4/gy = 1.2673(35)

e Moments of quark distributions
Deep inelastic scattering; structure functions
(z)q — Unpolarized: Fy(z,Q%), Fo(x, Q%)
() nq — Polarized: g1(z, Q3), go(z, Q%)

e Form factors
Elastic scattering

1

Fi(q?) = , 2\ = 12/Mz2,
1(q%) (1 + 2/M2)2 (ren) /My

Gald®) = IA (r2,) = 12/M3

(14 q2/M%)?%’



RBC-UKQCD generated Np=2 + 1 dynamical configuration.

1. u,d quark mass is as lower as my = 310 MeV.
Investigation of nucleon structure in chiral regime

2. Chiral symmetry on lattice

3. Physical volume 3 fm



Chiral symmetry on lattice
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If chiral symmetry is exact,
Zy = Z 4 at chiral limit.

Zy is determined by
Nucleon form factor
Zygf* = F1(0) = 1

Z 4 is determined by
Conserved axial-vector cur-
rent Ag

Z 4 is consistent with Zy within 2% at chiral limit.



Finite volume effect of nucleon matrix element
ga/gy is a simple, basic physical quantity of nucleon structure.

It is easy to calculate with DWF due to Zy/Z4 =~ 1. A
1'8_|'"'l'"'l'"'l'"'|""|""|""|""_ e —
16f gA/gV : /?N
14F .
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: } L4 1 Large finite volume effect is
1 ¢ RIOLZLAM 4 coen in heav region
_ B N=0L=24fm| Yy mgq reglon.
r A N=0L=3.6fm| -
0.8F ) ]
[ ¥ experiment ]
: 1 ga/9y at 2.4 fm almost
Ok o1 agrees with one at 3.6 fm.

L ~ 2.5 fm is enough for nucleon calculation.



RBC-UKQCD generated Nf = 2 + 1 dynamical configuration.

1. u,d quark mass is as lower as m; = 310 MeV.
Investigation of nucleon structure in chiral regime

2. Chiral symmetry on lattice
Zy = Z 4 is satisfied within a few %.

3. Physical volume 3 fm

Volume is large enough for nucleon calculation, based on Np =20
calculation.



3. Simulation parameters

e Ny =2 + 1 Iwasaki gauge + Domain Wall fermion actions
e 3=213a"1=1.62 GeV M5 = 1.8 mres = 0.003

o Lattice size 243x64x16 (La ~ 3 fm)

e ms = 0.04 fixed (close to mP™*)

e quark masses and confs.

my¢ | my[MeV] | # of confs. X Nmeas
0.005 310 52 x 4
0.01 390 119 x 4
0.02 520 49 x 4
0.03 690 b3 x 4

Results at two lighter masses do not have good accuracy, so that
all results are preliminary.

e We focus only on iso-vector quantities. (no disconnected diagram)
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Preliminary result

_ [ 1.22(10) (lat.)
ga/9gv —{ 1.267(4) (exp.)

We will confirm the result is reliable by improving statistics.
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4.2. Moments of quark distributions
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; <X> 4 e N=2¢1 || Unpolarized : (z)y_g4
. <X> m N=0 ; Polarized | (x) Au—_Ad
1 Au-Ad % experiment’
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4.2. Moments of quark distributions (cont’d)
Each component in Nf = 0 is independent of m.
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(xr),_q and (x)A,_Agq are closer to experiment, and have some my  de-
pendence.

Perturbative Z(2GeV) = 0.88(5) from PLB641,67
— We will calculate Z factor by non-perturbative method.
Preliminary result
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4.3. Form factors
Iso-vector form factors Fip — F

/ 2 ) FQ(QZ) /
(N,p|Vu(@)IN,p") = (N,p|F1(¢°)vu + iouwqu My N, p")
(N,plAu(Q)|N,p) = (N,p|Ga(q?)ivsyu + iv59uGp(q?)|N, p')

Lo'\?
q=17p —p, (—p> =0,1,2,3,4
2T

1
(1+q2/Mp)?
(r2) = 0.636(12) fm

Galg®) = (1+q921‘>M£)2, My = 1.07(2) GeV

(r2 ) = 0.408(13) fm

axr

My = 0.858(8) GeV

F1(g?)
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4.3
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. Form factors (cont'd)
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4.3
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. Form factors (cont'd)
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4.3
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. Form factors (cont'd)
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4.3. Form factors (cont’'d)
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F7 is almost independent of m; except for lightest mass.
G 4 has my; dependence.



4.3. Form factors (cont’'d)
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4.3. Form factors (cont’'d)
Effective My and M, Preliminary result
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Effective My, and M4 are reasonably flat.

My, is almost independent of my except for lightest mass.

M 4 has my dependence.
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4.3. Form factors (cont'd)
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4.3. Form factors (cont’'d)
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4.3. Form factors (cont’'d)
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4.3. Form factors (cont’'d)
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F> has my; dependence, but one at lightest mass is much smaller.
G p is explained by pion pole in current algebra,

2M NG A(g?)

Gp(q®) = 2 - m2
s
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4.3. Form factors (cont’'d)
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F> at lightest mass is below experiment.
Normalized Gp by pion pole and G 4 is almost consistent with current
algebra, and close to experiment.

2M NG A(g?)
G q2 =
r(a”) 2+ m2

Preliminary result

15



5. Summary

e \We calculated nucleon matrix elements with Nf = 2+ 1 dynamical
domain wall fermions at light quark masses.

e All results are preliminary.

e \We found encouraging and consistent results with experiments.

Future work

e \We will improve statistics of my = 0.005 and my = 0.01 data.

e Next calculation is on larger lattice size and smaller lattice spacing.
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